NitroFlare Dualities and Representations of Lie Superalgebras

Discussion in 'E-Books & Tutorials' started by kocogi, Aug 30, 2015.

  1. kocogi

    kocogi Active Member

    May 29, 2012
    Likes Received:
    Trophy Points:

    Dualities and Representations of Lie Superalgebras (Graduate Studies in Mathematics) by Shun-jen Cheng and Weiqiang Wang
    English | 2012 | ISBN: 0821891189 | ISBN-13: 9780821891186 | 302 pages | PDF | 12,2 MB

    This book gives a systematic account of the structure and representation theory of finite-dimensional complex Lie superalgebras of classical type and serves as a good introduction to representation theory of Lie superalgebras.

    Several folklore results are rigorously proved (and occasionally corrected in detail), sometimes with new proofs. Three important dualities are presented in the book, with the unifying theme of determining irreducible characters of Lie superalgebras. In order of increasing sophistication, they are Schur duality, Howe duality, and super duality. The combinatorics of symmetric functions is developed as needed in connections to Harish-Chandra homomorphism as well as irreducible characters for Lie superalgebras.

    Schur-Sergeev duality for the queer Lie superalgebra is presented from scratch with complete detail. Howe duality for Lie superalgebras is presented in book form for the first time. Super duality is a new approach developed in the past few years toward understanding the Bernstein-Gelfand-Gelfand category of modules for classical Lie superalgebras. Super duality relates the representation theory of classical Lie superalgebras directly to the representation theory of classical Lie algebras and thus gives a solution to the irreducible character problem of Lie superalgebras via the Kazhdan-Lusztig polynomials of classical Lie algebras.[​IMG]
    Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
    Download ( NitroFlare )

Share This Page